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temperature variation  

within the urban landscape 
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Mobile temperature collection  

Landscape variables 

 impervious surfaces 

 relief 

 aspect 

 elevation 

 canopy cover 

Extrapolation  

 Kriging & Random Forest 

Reserve 10% of observations for accuracy 

 assessment  
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Scaled to 30m cells 

Data & Analysis – short version  

this study: 19 models  
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mobile air temperature data collection  
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1. Mobile temperature collection:  
 Select calm, clear, forecast  -- avoid overcast, 

wind, frontal activity, precipitation . . . .    
 Drive morning schedule to match Landsat—

sometimes, afternoon and nighttime 
 Break data into 1-hour units 
 Scheduling vehicles, volunteer drivers, installing 

temperature units, usually requires lead time 
longer than forecast interval . . . .  

mobile air temperature data collection  



expanding Roanoke's fixed station network 

after before: 6 stations  
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after: 17 stations  



Roanoke is positioned at the western edge of Path 16, so in 2013 & 2014, it was 

(theoretically) possible to collect three scenes in one week (weather permitting). 
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Landsat 7 TM, SLC-off 

(Path 17, Row 34) 

Landsat 8 OLI  

(Path 17, Row 34) 
Landsat 8 OLI  

(Path 16, Row 34) 

Matching data collection to Landsat schedule 

Landsat 5 TM 

(Path 17, Row 34) 



23 April 2013 

morning  

temperatures   

morning  

temperatures 

lag -1   

afternoon   

temperatures   

7 some results  

Key variables: 

Key variables: IS, elevation, basis temperature (varies w/time of day)                 

Accuracy: landscape metrics explain 60% - 90% of temperature variation 



Hart, Melisa, and David J. Sailor. 2009  “Quantifying the influence of land-use and 

surface characteristics on spatial variability in the urban heat island.” Theoretical 

and Applied Climatology 95(3):397-406. Feb, 2009  

300 m  

grid  

cells 

 

Mobile temperature collection 

Landscape variables  

 

Vegetation cover  

Canopy cover 

Impervious surface 

Loose surface cover 

Land use 

Bldg floor space 

Length of roads 
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Hart & Sailor (2009), Portland, OR 

comparison with similar strategy 



675, Landsat 5 – April 2010 675, Landsat 5 – Sept 2010 

clear, calm weather, with solar heating several  

days in succession.    
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675 

thermal only 



 



Virginia Tech 

Center for Geospatial Information Technology 

 

Peter Sforza 



 

Research Infrastructure 

Peter Sforza, Director 

sforza@vt.edu 
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Research Examples 

Local 

Global 

NG-911 

FirstNet 

2/9/2015 Peter Sforza - Virginia Tech 

Center for Geospatial Information 

Technology 

16 



New Statewide Digital 

Surface Model (DSM) 

for Virginia from LiDAR and Photogrammetry 

 

 Proposed by VT-CGIT and VGIN to support development of 3D Spatial Data Infrastructure and the Advanced 
Broadband Analysis and Planning Toolbox for the Commonwealth of Virginia Broadband Mapping Initiatives 

 A digital surface model (DSM) is a digital representation of all natural and artificial features that are visible on 
the surface of the earth.   It includes exposed ground and above –ground features, such as vegetation, 
buildings and other cultural features.   It is useful in geospatial analysis and applications that require line-of-
sight, viewshed or vegetation analysis. Applications of DSM data are found in telecommunications, forestry, 
community planning and renewable energy. 

 A statewide DSM for the Commonwealth will be created to support wireless broadband mapping efforts such as 
vertical assets identification and wireless broadband propagation modeling.  The statewide seamless DSM will 
also provide the basis for analysis and visualization that may support policy and business investment decisions 
related to broadband and communications infrastructure in the Commonwealth of Virginia. 

 As a part of the final product deliverable, a qualitative accuracy assessment will be performed by the DSM 
developer.  This assessment will conform to the National Standard for Spatial Data Accuracy (NSSDA) 
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3 

http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3
http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3


Corner Antenna Yagi Antenna 

3D Virginia:  
Statewide Broadband and RF Propagation 

  



CGIT has developed automated methods for real-time DMV crash records, with a 

total of 566,232 crash locations processed in the Commonwealth of Virginia from 

January 1, 2011 through September 29, 2015.  

 

3D Virginia:  
Statewide DMV Crash Record Analysis 



 



 



BigData for Real-Time Landslide Risk 

 



 

Landsat NDVI 

Richmond, Virginia 

 

 

Census 2000 

block groups 

Low: -1 High: 1

NDVI
(June 10, 2008)



Block Group ID 517600603002

Scene Name LT50150342008162EDC00

Min NDVI -0.0710

Max NDVI 0.5252

Mean NDVI 0.1532

Std. Dev. of NDVI 0.1298

NDVI zonal statistics 
(for a specific scene-polygon combination) 





Global Agroclimate http://arcgis-research.gis.vt.edu/cgit/global/index.html  

Virginia has the climate and soils to support high 

quality grape production and compete on a 

global scale 

Similarity to Burgundy Region 

 

http://arcgis-research.gis.vt.edu/cgit/global/index.html
http://arcgis-research.gis.vt.edu/cgit/global/index.html
http://arcgis-research.gis.vt.edu/cgit/global/index.html


Suitability (S) 

Weighted Criteria (wi ✕ Ci) Restrictions (Rj) 

Site Suitability 



Current Research at CGIT:  

Vineyard Site Assessment and Simulation  

of Grape Varieties in Virginia and the Eastern U.S. 



NCDC GHCN 
Daily by Year 

PRISM 
Monthly 

 Tmin 
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parallel 

processing 

publishing 
Web Service 
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Implementation Overview 
Read and extract raster metadata 

Split raster grid-wise and convert to ASCII GRID 

Transfer data to ARC staging 

Execute qsub job to queue MATLAB computation 

Retrieve job ID and status 

Reconcile and regenerate complete raster 

2/9/2015 
Peter Sforza - Virginia Tech 

Center for Geospatial Information 

Technology 
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NexRad 

CGIT HPC 

Tools 
HPC 

Python 

-NexRad processing 

-Terrain, Imagery, GIS 

processing 

-Unity Scenegraph construction 

In-place 

compute 

Job Status 

Data ETL 
qsub Execution 
Reconciliation 

Queue 

Completed 

Data 

Geodata 

Data Processing Data Processing Software Libraries 

User Input 

Unity 

Assets 

Unity Scene 

Data Repository 
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a.       Dave Carroll – Instructor of Meteorology  
b.      Bill Carstensen – Professor of GIS 

c.       Drew Ellis – Professor of Meteorology 

d.      Kenyon Gladu – undergraduate student in Meteorology 

e.      Peter Sforza – Director of the Center for Geospatial Information Technology 

f.        Trevor White – Graduate student in Business Information Technology (but 
presently  transferring to Geography) 
g.       Run Yu – PhD. student in Computer Science 
 

Virginia Tech ICAT 

Scientific Visualization 

Moore, OK Tornado 



 



Integrating ESRI ArcGIS Server and 

Amazon Mechanical Turk to facilitate 

human image interpretation 

 

Seth Peery, Sr. GIS Architect 

Virginia Tech Information Technology 



System Design 

Map Service 

(grid) 

Image Service 

(scene) 

Geodatabase 

ESRI ArcGIS Server 

Web Tier (ExternalQuestion) 
HIT hosting and discovery 

mTurk API 

mTurk Backend 
• HIT lifecycle management 

• Work force qualification 

• Payment of workers 

PHP wrapper (processes  

input parameters) 

HTML5 / JavaScript  

web mapping application 

(ESRI JS API) 

ExternalQuestion 

Admin 

Desktop 

• Create HITs 

• Set rewards/HIT properties 

• Approve results 

• Download results 

• Destroy HITs 

• Create and assign qualifications 



The Human Intelligence Task  (HIT) 

p092r086_c1 : 2 

p092r086_c2 : 2 

p092r086_c3 : 2 

p092r086_c4 : 0 

p092r086_c5 : 0 

p092r086_c6 : 0 

p092r086_c7 : 0 

p092r086_c8 : 0 

 

 

 

 

 

 

 

 

 

 

 

p092r086_b1 : 2 

p092r086_b2 : 2 

p092r086_b3 : 2 

p092r086_b4 : 0 

p092r086_b5 : 0 

p092r086_b6 : 0 

p092r086_b7 : 0 

p092r086_b8 : 0 

 

 

 

 

 

 

 

 

 

 

 

p092r086_a1 : 2 

p092r086_a2 : 2 

p092r086_a3 : 2 

mTurk VT 

Cloud impacted tiles are returned to mTurk, as {ID:interp code} 

ExternalQuestion 

 

ESRI ArcGIS Server 

JS API App 

located at VT 

 

https://secure.gis.vt.edu/forestry/clouds/ci-LST.php?gridSvc=p141r048&imgSvc=LC81410482014117LGN00_8b&xMin=642402.812163&xMax=646155.183614&yMin=1990050.256889&yMax=1993915.783943&wkid=32644&rBand=5&gBand=4&bBand=3


Research to date 

 Collaboration with 

applied economists 

 Objectives 

 Find optimal wage for 

this type of work 

 Determine practical work 

units (human attention 

span) 

 Evaluate accuracy of 

human interpreters 

 Comparison to 

automated methods 



Methodological Considerations 

Quadtree 

decomposition of 

WELD tiling 

scheme; user-

defined minimum 

mapping unit. 

resolution ~150m  

Work unit of 64 

fixed size tiles.  

No end user 

subdivision.   

resolution ~300m 

WELD CONUS tiles 

Subdivision 2: 8x8  (work unit for published paper) 

Subdivision 1: 8x8 

h28v10_g6_c2_d2 
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1) Band combinations 3) Minimum mapping unit 

2) Reference tiling scheme and registration 

1 pixel 

1 pixel 

… 



Seth Peery 
 Senior GIS Architect, Enterprise GIS 

 Virginia Tech Information Technologies 

    1700 Pratt Drive (0214)  
Blacksburg, VA 24061 

 (540) 231-2178 

 sspeery@vt.edu  

 http://gis.vt.edu  

 

 

Contact Information 

mailto:sspeery@vt.edu
http://gis.vt.edu/


Delineation of Surface 

Coal Mining History in 

Appalachia Using Landsat 

Imagery 

 and J. Li,† P.F. Donovan ‡, R.H. Wynne§, A.J. Oliphant§ 

1984 

2011 

† China University of Mining and Technology;  
‡  Crop and Soil Environmental Sciences, Virginia Tech 
§ Forest Resources and Environmental Conservation,  Virginia Tech 

Presenter:  

C.E. Zipper‡   



Problem: Significant land 

base in eastern USA mined 

and reclaimed under 

SMCRA. Where is it? What 

are its properties? What are 

cumulative effects of 

Appalachian mining? 

PA OH 

KY VA 

WV 

Appalachian coalfield 

Coal surface mining disturbance 
Mined land reclaimed 



Research Goals 

Prepare inventory of land mined under SMCRA in 

southwestern Virginia’s Appalachian coalfield by 

mining date, so as to characterize the progressive 

nature of landscape change over the period of 

study. 

 

Develop method that can be applied in other areas. 

 

Apply data product to improve understanding of 

environmental impacts and recovery processes. 



1. Acquire leaf-on Landsat TM/ETM+ images (Path 18, 

Row 34): 1 per year, 1984-2011. Process†, georectify, 

and “stack.”   

 

2. Obtain ancillary data to assist classification: 

 Virginia DMME mine permit database,  

 High-resolution aerial imagery (NAIP) 

 National Land Cover Database (NLCD). 

 
3. Produce and classify Training & Validation data:  

PV: Persisting vegetation, vegetated for each image 

EM: “Ever mined”, mined within the image sequence 

OD: Other disturbances, with subclasses 

Research Methods 





4. Using training data and 2008 image: Select 

vegetation index for use (b= bare, v = 

vegetated); define bare-ground threshold. 

Normalized 

difference 

vegetation 

index 

Normal-

ized burn 

ratio 

Normalized 

difference 

moisture 

index 

Tassled cap 

greeness-

brightness 

difference 

Landsat 

Band 3 

Landsat 

Band 4 
NDVI 

works 

best! 



Pixel’s trajectory

T1 T3
T0 T4T2

Vegetated/Bare ground threshold

For mined areas.

V
e

g
e
ta

ti
o
n

 I
n

d
e

x
 (

N
D

V
I)

 
(n

o
rm

a
liz

e
d
)

5. Analyze “spectral trajectory” to identify 

disturbances, test hypotheses, and classify. 

Classes: 

PV: 

persisting  

vegetation 

EM: Ever 

mined 

OD: Other 

disturbances 

: Hypotheses are: 

i. Minimum NDVI for mined lands (EM) will generally be lower than the minimum 

NDVI for non-mining disturbances);  

ii. Standard deviation of NDVI after disturbance will be greater for mined lands than 

non-mining disturbances. 



Results 



Accuracy assessment: 95% overall  
 (Users Accuracy = 95.4%; Producers accuracy: 93.3%) 

Primary errors: Polygon edges; narrow, linear mining features; 

where cloud contamination increased time intervals. 

Most “other 

disturbances 

inside permit 

boundaries” 

appear to be 

pre-1984 

mined areas. 

EM (Mined lands) 



Other disturbance 

inside permit 

boundary. 



Applications 
• Terrestrial 

• Aquatic 



A.J Oliphant: “Mapping Elaeagnus umbellata on Coal Surface 

Mines using Multitemporal Landsat Imagery” M.S. Thesis   

Non-Native Invasive – 

Autumn Olive (AO) 

Method: Classify AO cover on 

mined land by “age” using 8 

Landsat images, 7 bands & 7 

indices per image. 

 

Results: 

AO is a major component of 

vegetative cover on ~15% of 

lands mined 2001 and earlier. 

 

Lands mined 2002 - 2011: 

Fraction of lands classified AO  

increases with the amount of 

time that has past since mining. 

Terrestrial Application 

Autumn Olive 



Aquatic Application 

Hypothesis: As 

mining 

disturbance 

expands 

continues through 

time, total 

dissolved solids 

(TDS)  

concentrations in 

draining stream 

water increase.  

Hypothesis: As a mining disturbance 

ages, its influence on total dissolved 

solids concentrations of the river or 

stream draining the watershed will 

decline  

“ Spatial and temporal relationships among watershed 

mining, water quality, and freshwater mussel status in an 

eastern USA river” CEZ et al. Sci. Tot. Environ. 2016 
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Conclusions 

Time-series analysis of Landsat TM/ETM+ 

imagery was well suited for the task of identifying  

surface coal mining locations, and quantifying 

mining disturbances over a broad area by 

approximate date of initial disturbance. 

 

The resulting data can be applied to aid 

understanding of (i) environmental impacts due to 

mining disturbance, and (ii) recovery processes as 

they occur over extended time periods 



Use of LAI Derived from Landsat  for  

Silvicultural Decision in Southern Pine Plantations  

 

Thomas Fox 

The Honorable Garland Gray Professor of Forestry 

 Director, Forest Productivity Coop 

 



Forest Productivity Cooperative 

 A partnership among, Virginia Polytechnic Institute and 

State University, North Carolina State University, and 

the Universidad de Concepción and forest industry and 

landowners 

 55 Industry Members that own > 30 million acres of 

pine  and eucalyptus plantation in Southern US and 

Latin America  

 NC STATE UNIVERSITY  



BR 

Pine Eucalyptus Others
LA 

Pine Eucalyptus Others

US 

Pine Eucalyptus Others

Percentage of 

Forest Type per 

Region 



Fertilization 
Weed Control 

Elite Genotypes 

Goal is to Increase Productivity, Profitability, and 

Sustainability of Planted Forests Through Use of  

Site Specific Silvicultural Treatments  



Impacts of Intensive Management on Growth of  

Loblolly Pine in Southeast Georgia 

Check 

Age 13 = 67 ton /ac 

Annual Fertilization  

& Competition Control 

Age 13 = 150 ton / ac 



Poor Growth 

in Stands 

with Low LAI 

Rapid 

Growth in 

Stands with 

High LAI 
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Model Estimates of Growth  

Efficiency of Loblolly Pine  

Pine  

Legend 

CAI (ft^3/acre/yr) 

0 - 350 

350 - 400 

400 - 450 

450 - 500 

500 - 550 

> 550 

3.9 tons/ac/yr per LAI 

3.5 tons/ac/yr per LAI 

2.8 tons/ac/yr per LAI 

3.1 tons/ac/yr per LAI 
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Landsat as a Tool to  

Determine Leaf Area 



y = 0.59x - 1 

R 
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I 
Remote Sensing Estimation of LAI  

Using Landsat Imagery 

Flores et al. 2006 



Winter Leaf Area in  

South Carolina 



LAI versus Age of Loblolly 

Pine Plantations in Alabama 

LAI is based on Flores et al. 2006 equation which uses TOA reflectance 



FERTILIZATION 



11 Year Fertilizer Response in Loblolly Pine  

in Southeast Georgia 

Control Fertilized 



LAI Impact On Standardized  

Fertilizer  Response 
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Technology for Precision  

Silviculture Prescriptions 



Precision Plantation Silviculture 

Site Specific Treatments 

 

 

 



Problems with LAI estimation  

in Stands with Evergreen Understory  

Georgia 

Florida 



HTLC 
Understory 

Top of Canopy 

Ground Relief 



Questions  



Landsat – MODIS Wavelet-based  

Fusion Model 

Sherin Ghannam, PhD student, IGEP group 



Spatial and temporal resolution 

tradeoff 

t = t2 t = t1 t = tp 

? Landsat 

MODIS 



Transform based + reconstruction 

based fusion techniques  



Multiresolution analysis by wavelet 

decomposition:  

high 

frequency 

low 

frequency 

along n along m 

f(m,n) 

LL 

LH 

HL 

HH 

h[n] 

g[n] 

h[m] 

h[m] 
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3 level wavelet decomposition 



Proposed model 



Low frequency prediction 
Preprocessed 

MODIS 

 Landsat LL 

bands 

Predicted LL band 



High frequency prediction 

Landsat HF bands 

Predicted HF bands 



Weighting function 



Weighting function 



Study area 



Results: May 24, 2002 

Actual red band image Predicted red band image 

R2
 = 0.7819  



Results: May 24, 2002 

Actual near-infrared band 

image 

Predicted near-infrared band 

image R2
 = 0.8972  



Results : red band  
(prior-posterior base images) 



Results: near-infrared band 
(prior-posterior base images) 



Results: near-infrared band 
(nearest base images across years) 



Thanks 
 

sghannam@vt.edu 



Automatic Surface Extraction from Photon 

Counting LiDAR in Preparation for 

ICESat-2 

Mahmoud Awadallah 



Motivation 
 

 ICESat (2003 – 2009):  

 Full waveform: Geoscience Laser Altimeter System (GLAS). 

 ICESat-2 (to be launched in 2017): 

Photon-counting: Advanced Topographic Laser Altimeter 

System (ATLAS). 



ATLAS 
• Transmits green (532 nm) 

laser pulses at 10 kHz 

• Footprint diameter 14 m 

• Each laser pulse is split to 

6 individual beams, 

arranged in three pairs. 

• The beam pairs are 

separated by ~3.3 km in 

the across-track direction, 

and the strong and 



M-ATLAS example 

Along track distance 

E
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v
a
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M-ATLAS example 



Datasets  

Sigma Space MPL (Micropulse Photon-Counting 

LiDAR) 

MABEL (Multiple Altimeter Beam Experimental 

LiDAR) 

M-ATLAS 

SIMPL (Slope Imaging Photon‐counting 

Multi‐polarized LiDAR) 

 



Algorithm flowchart 



Rasterization 



Noise reduction 



Histogram noise reduction 



Bayesian noise reduction  

 𝑃 𝑋 = 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!
 

 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 =
𝜆2

𝑘 𝑒−𝜆2

𝜆1
𝑘 𝑒−𝜆1

 



Bayesian noise reduction 



Wiener filter 



Morphology 



Median filter 



Majority voting 



Contour detection 



Area classification 
Locally weighted scatterplot smoothing (LOWESS) regression method  



Example result 



Example result 



Example result 



Hill clipped in 
G-LiHT DTM 

Vegetation not 
removed in G-LiHT 
DTM 

From Amy Neuenschwander  

Validation (G-LiHT?) 



Validation (G-LiHT?) 

From Amy Neuenschwander  



Thank you 



Forecasting the Forests of the 
Future 

R. Quinn Thomas 

Forest Resources and Environmental Conservation 



How are forest 
dynamics expected to 

respond to global 
change? 

How do forests 
influence regional 

and global 
climate? 



How do forests 
influence regional 

and global 
climate? 



Earth System Modeling 



Afforestation influence on climate 

Ben Ahlswede 
M.S. 2015, Ph.D. 



How are forest 
dynamics expected to 

respond to climate 
change? 



“Study the past, if you would 
divine the future.” 

- Confucius 



“Build and parameterize a model that 
is consistent with past research and 

quantify uncertainty to forecast future 
forests” 

- iConfucius v2  



Ecosystem models 

Forecasting 
System 

Model 
parameters 

and 
uncertainty  
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Sweet Briar - Virginia Tech Flux Tower 

Dr. Tom O’Halloran 
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Forest response to 
 environmental variation 

sbc-lars.blog.sbc.edu Ameriflux: US-SBC 

Dr. Tom O’Halloran 



Nutrient x Drought Factorial 
(30% rain exclusion) 

Climate gradients 
Nutrient addition 

University-Industry 
Cooperatives 

(e.g., FPC & FMRC) 
1979-present 

Pine Integrated Network: Education, Mitigation, and Adaptation Project 

PINEMAP  www.pinemap.org 



Other data in the region 

Duke CO2 Experiment 

(Higher CO2) 
NC2 Ameriflux Tower 
(Inter-annual climate 

sensitivity) 

Duke Ameriflux Tower 
(Inter-annual climate 

sensitivity) 

Dr. Tom O’Halloran 

Time-series Leaf Area Index 
(Landsat) 
Climate gradients 

Courtesy of Images Dr. Christine Blinn 



Ecosystem models 
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Canopy Light Use Efficiency 

Data 

Prior knowledge 

Updated knowledge 
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Forecasts 

RCP 8.5 

Climate Model 2 Climate Model 1 

Annika Jersild 
M.S. Student 



20 different climate models 



Full integration of uncertainty  
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How are forest 
dynamics expected to 
respond to nitrogen 

deposition? 



Tree growth response to 
N deposition 

U.S. Forest Service 
Inventory and 
Analysis Data 

Carbon response to additional 
nitrogen deposition 

Dr. Kevin Horn, Post-doc 



VT  
Global Change Center 

 
 

Forest Productivity & 
 Forest Modeling Research  

Cooperatives 



 

University Libraries Services 

 



Personnel 

Consultation Services   
• College Librarian for Natural Resources & 

Environment 

• Government Documents & Maps Librarian 

• Geospatial Data Consultant 

• Research Data Consultant 

• Data Curator 

 

Administration  
• Associate Dean for Research & Informatics 

• Assistant Director for Data Services 

 

 

 
 



Traditional Services 

College Librarian for Natural Resources & 

Environment 
• Collection Management 

• Instructional Services 

• Research Assistance 
 

Other Services 

• Interlibrary Loan 

• Off campus access & troubleshooting 
 

New services 

• Port ** (GIS) *** 

• Publishing  

 

http://www.lib.vt.edu/port/index.html
http://www.lib.vt.edu/port/software/geospatial-mapping.html


Conference Support 

Government Documents & Maps Librarian 

Geospatial Data Consultant Collection 
 

 

 

http://www.ogis.org.vt.edu/symposium/


Data Services – Grant Mandates 

Research Data Consultant 
 

 

 

 

 
 

http://guides.lib.vt.edu/RDM


Data Services – Project Support 

Data Curator  
• Workflow development for curation of our 

geospatial data collection  

• consulting with faculty on curation issues and 

collecting datasets for the data repository. 

 

 

 

 

 
 



Other Initiatives 

Institutional Repository *** 

• Electronic Theses/Dissertations (ETDs) 

• Research  

• Articles ***  

• Algorithms/Scripts *** 
 

Publishing Support  *** 

• Open Access  
• Subvention Fund 

 

Data Repository (forthcoming) 

http://vtechworks.lib.vt.edu/
http://hdl.handle.net/10919/50544
http://hdl.handle.net/10919/50852
http://www.lib.vt.edu/research/publish/index.html


Research Projects Using Landsat 

Evan Brooks 

 



 Harmonic regression coefficients used as predictors in a 
conditional random forests model to make a wall to wall map of 
forest variables from EFR intensified plots 

Coweeta EFR 

Calhoun EFR 

Santee EFR 

EFR Maps 



EFR Maps 

Earlier 

greenup 

Later 

greenup 

Less obvious 

drop in Summer 

soil moisture 

Pronounced 

Summer drop in 

soil moisture 



DBH  
Purples and Browns = Small 

Yellows and Greens = Large 



 Using harmonic 
regression 
coefficients to build 
maps for post-
stratification of FIA 
Phase 2 plots 
 Refined version 

undergoing 
continued review 
in Remote Sensing 
of Environment 

Source: Brooks, E. B., Coulston, J. W., Wynne, R. H., and Thomas, V. A. “Improving the 

precision of dynamic forest parameter estimates using Landsat.” Remote Sensing of 

Environment (in review).  

 

Post-Stratification 



 Testing the applicability of WR in 
destriping ETM+ data and filling in cloud-
masking gaps 
 Initial results suggest mean absolute 

percentage error of ~15%, varying by band 

 Paper submission pending (Remote 
Sensing) 

Window Regression 



 EWMACD 
implemented 
successfully on 
Hadoop via 
starchive 
architecture 
 Fortran 

version also 
employed on 
standard 
binary format 
using 
NewRiver 

 

Stack Archives (Starchives) 



 Completed 

processing for pilot 

study (six scenes, full 

TM history) 

 45/30 shown 

 Accuracy comparable 

to other LCMS base 

learners 

 Will use TimeSync 

reference data to 

tune EWMACD for 

improved 

agreement 

EWMACD/LCMS 
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EWMACD/Projects 



Landsat Images: Algorithms for Trend and 

Change Detection 

 
Rishu Saxena, Prof. Layne Watson, and Prof. Randy Wynne 

 



Introduction 

● Given: The time series of the band 

values from a stack of satellite images 

of a region take over time. 

● Change detection is our primary focus: 

○ How do we design algorithms? 

○ Can we distinguish stable vegetation 

cycles from harvest, occurrence of 

fire, volcanic activity, or any other 

stress in that region? 

● Scalability is an inevitable issue: 

○ Algorithms must be scalable on the 

available hardware both temporally 

as well as spatially. 



Motivation 

Model-Map on Oregon EWMACD on Oregon SHAPES on Oregon 

● Different algorithms give different results!!! 



Examples of time series 
Signals from different disciplines Signals from remote sensing 

Orego

n 

South 

Carolin

a 

Australi

a 

Woodlan

ds 



State-of-the-art 
  Segmentation approaches in 

general time series literature 
Algorithms in Remote Sensing 

● BFAST (2009) 

● VCT (2009) 

● Model Map (2009) 

● LandTrendR (2010) 

● MIICA (2011) 

● EWMACD (2012) 

● VeRDET (2014) 

● CCDC (2014) 
● SHAPE-SELECT-FOREST 

(2015) 

● Kernel regression 

methods 

● Top-down approach 

● Bottom-up approach 

 

Remote sensing vs. the broader picture 



State-of-the-art 
Segmentation approaches in 

general time series literature 
Algorithms in Remote Sensing 

● EWMACD, CCDC, 
SHAPE-SELECT-FOREST 

 

● LandTrendR, VeRDET 

 

● Model-Map, BFAST, 

MIICA, VCT 

 

● Kernel regression 

methods 

 

● Top-down approach 

 

● Bottom-up approach 

 

Remote sensing vs. the broader picture 



Our approach 

 

We believe that developing an algorithm that combines 

algorithms that 

● already exist, but 

● differ in terms of the phenomena they capture, 

will adequately address the problem of analyzing time series 

coming from anywhere across the globe. 

 

 

Question: How do we combine different algorithms? 



Our approach 

Combining multiple algorithms: 

 
Ensemble Hybrid Polyalgorithm 

Contains multiple 

learners called base 

learners. Base learners 

are generated from 

training data by a base 

learning algorithm which 

can be decision tree, 

neural network or any 

other kind of learning 

algorithm. 

 

Eg. Random Forests. 

 

Combines two or more 

different algorithms that 

solve the same problem, 

either choosing one 

(depending on the data), 

or switching between 

them over the course of 

the algorithm. 

 

 

 

Eg. (i) Introsort for sorting, 

(ii) Brent’s method for root 

finding. 

 

Collection of several 

algorithms that strives to 

satisfy certain objectives 

as it determines which 

particular algorithm to use 

in a given scenario. 

 

 

 

 

 

Eg. Root finding algorithm 

in NAPSS (uses secant 

method with requisite 

tests). 

 



Our approach 

Construction of a polyalgorithm: 

● Initial choice of basic algorithms. 

● Rough synthesis of polyalgorithm and strategy. 

● Refinement of numerical analysis procedures and 

development of new procedures for unforeseen situations. 

● Reorganization of the polyalgorithm to improve efficiency. 

● Refinement of error control and accuracy measures. 

● Extensive testing and refinement. 



Scalability 

Data storage, transfer and processing are computationally 

challenging. Parallel and high performance computing is 

indispensable. We have run experiments on 

● Honeybadger: a Hadoop cluster at VT. 
○ We used one compute node, which is a 2.3 GHz AMD Opteron 

CPU, with 16 cores and 64 GB of main memory. 

○ Running EWMACD (python) on one image stack (600 GB) takes 

about 10 hours. 

● Newriver: a 134-node system at VT. 
○ We used one compute node, which is a 2.5GHz Intel  Xeon(R) 

CPU, with 24 cores and 264GB of main memory. 

○ Running EWMACD (Fortran) on one image stack (21 GB) takes 

about 7 minutes.  

○ Detailed specifications at: 

https://secure.hosting.vt.edu/www.arc.vt.edu/computing/newriver/ 

 

https://secure.hosting.vt.edu/www.arc.vt.edu/computing/newriver/
https://secure.hosting.vt.edu/www.arc.vt.edu/computing/newriver/


Summary 

● Different currently existing algorithms give different results for 

trends and change in land usage and land cover. 

● In this project, we are 

○ studying time series algorithms available in remote sensing 

community as well as in the broader time series analysis 

literature, 

○ sorting out the unique ones, and 

○ developing strategies to combine them into a single 

algorithm, a polyalgorithm, so as to best suit the remote 

sensing community. 

● Ongoing work: We are currently 

○ developing fortran code base. 

○ exploring OpenMP and MPI implementations of all our 

codes along with the use of databases for efficient storage 

and access. 
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Advanced Research Computing 

 

 



Advanced Research Computing (ARC) provides centralized support 

for research computing by building, operating and promoting the use 

of advanced cyberinfrastructure at Virginia Tech. ARC delivers a 

comprehensive ecosystem consisting of advanced 

computational systems, large-scale data storage, 

visualization facilities, software, and consulting 

services. ARC provides education and outreach services through 

conferences, seminars, and scientific computing courses. ARC seeks 

to help maximize research productivity at Virginia Tech 

through interdisciplinary collaborations that connect researchers to 

new opportunities in computing and data driven research as they 

occur.  By fostering strategic partnerships with the public and private 

sector, ARC serves to cultivate an entrepreneurial spirit around 

advanced computing infrastructure as a platform for collaboration 

and helps secure the position of Virginia Tech as a leader in 

education and research. 

Mission 



ARC Personnel 

• Associate VP for Research Computing: Terry Herdman (herd88@vt.edu) 

• Director, HPC: Vijay Agarwala (vijaykag@vt.edu) 

• Director, Visualization: Nicholas Polys (npolys@vt.edu) 

• Assist. Director, Development and Fiscal Admin: Alana Romanella 
(aromanel@vt.edu) 

• Computational Scientists  

– Justin Krometis (jkrometis@vt.edu) 

– James McClure (mcclurej@vt.edu) 

– Brian Marshall (mimarsh2@vt.edu) 

– Srijith Rajamohan (srijithr@vt.edu) 

– Open Searches: Computational and Data Scientists 

•  Systems and Software Engineer: Open Searches 

• Visualization and Virtual Reality Systems Specialist - Lance Arsenault 

 

 

 

 

 

mailto:jkrometis@vt.edu
mailto:mcclurej@vt.edu
mailto:mimarsh2@vt.edu
mailto:srijithr@vt.edu


ARC Cyberinfrastructure 



NewRiver 



Software 

 Bioinformatics: BLAST/BLAST+, CUDASW++, Trinity, Mothur, QIIME 

 Code Development: Boost C++ Libraries, CMake, CUDA, FFTW, GCC,  

GNU Scientific Library (GSL), Haskell, HDF5, Intel, Java, MAGMA, Intel-MKL, 

OpenMPI, PETSc, PGI, Python, Subversion, TotalView, Valgrind, netcdf, 

Mvapich, Allinea 

 Computational Fluid Dynamics: ANSYS Fluent, OpenFOAM 

 Electronic Structure/DFT: Quantum ESPRESSO, VASP, WIEN2k 

 Evolutionary Biology: BEAGLE, BEAST, MrBayes, OpenBUGS 

 FEM: ABAQUS, ANSYS, LS-DYNA, OpenSees 

 Mathematics: GAUSS, MATLAB 

 Molecular Dynamics: GROMACS, LAMMPS, NAMD, Amber 

 Quantum Chemistry: Gaussian, NWChem 

 Statistics: GAUSS, MATLAB, R, CPLEX 

 Visualization: ParaView, Ensight, Visit, VMD, VTK, Fieldview, Tecplot 



Access / Usage 

ETX 

NewRiver offers web browser-based access to interactive nodes. This 

interface provides faster, more interactive access to graphical user 

interfaces than standard X11 forwarding (e.g. ssh -X). ETX will 

automatically load balance users between the eight interactive nodes. 

 

To access it, use a web browser (e.g. Firefox or Safari, not Chrome) to 

go to 

 

http://newriver.arc.vt.edu 

 

Globus 

From www.globus.org - “Globus gives researchers everywhere access 

to a fast, powerful data management service that’s easy to use. Simply 

fire off a transfer request and walk away, or share big datasets directly 

from your existing storage with just a few clicks — and when you need 

to make your data available to others, let our data publication service 

guide you.” 

 

Search endpoints for => Virginia Tech - ARC 

 

http://newriver.arc.vt.edu/
http://newriver.arc.vt.edu/
http://www.globus.org/


Questions??? 

See www.arc.vt.edu 



An Alternative View 
Of Forest Biogeochemistry and Ecophysiology 

 

Val Thomas, B. Strahm, K. Britt, B. Cook 

 



Some big picture questions 
 How does forest structure relate to canopy physiology, and 

what drives changes in these relationships across 

geographic and environmental gradients?  

How will forests respond to existing and future pressures? 

 How can these processes be measured/monitored with 

remote sensing? 

 Forest biogeochemistry 

 Forest structure/crown architecture 

 Forest growth, disturbance, recovery 

Biodiversity 

Lidar 

Imaging Spectroscopy 

 

Multitemporal data 

(Landsat and other) 



Eg: Long-term research goal 

 Prediction of where and when forest 

ecosystems will: 

 buffer anthropogenic 

alterations to the N cycle 

through N retention 

 or be susceptible to increased N 

and lose it to the surrounding 

environment 

e.g., leaching to aquatic 

systems, etc..   

 

UNEP and WHRC, 2007 



Nitrogen Retention 

dN = 15N/14N 

 

Air =  



Study area 
20 Hardwood Plots 

38 large trees to 

sample major species 

10 Loblolly pine  plots 

Foliar and soil samples 

collected 



Image Acquisition 
September and October, 2014 - G-LiHT (NASA) 

airborne scanning lidar and imaging spectroscopy 

10 cm footprint at an altitude of 335 m 

0.3 mrad beam divergence angle 

VNIR spectroscopy data 

 

Cook et al. 2013 



Laboratory Analysis 
• Foliar: 

– %N,d15N, enrichment 

– C:N, %C, Al, B, Ca, Fe, K, 
Mg, Mn, Na, P, Zn 

– Chla, Chlb, Chla+b, Chla/b, 
carotenoids 

• Soil: 
– %N,d15N, enrichment,  

• Tree: 
– Species, DBH, Crown 

width (NS/EW) 



Some findings 
 %N in the soil is a stronger driver of 

nitrogen retention than %N in the 
foliage 

 %N in the soil is strongly correlated 
to foliar isopotic N 

 

 Lidar metrics of canopy structure 
related to height and biomass are 
predictors of ecosystem nitrogen 
retention 
 Suggests Landsat-derived growth 

response may provide valuable 
insights 

 

Pines 

Hardwoods 



! 53 

 

 
Figure 5.   Study site locations of the Stand Management Cooperative paired-tree fertilization 

trials distributed throughout the geographic range of coastal Douglas-fir in the United States.  

 

 

 
Figure 6.  Study site locations of the Forest Productivity Cooperative regional fertilization trials 

distributed throughout the geographic range of loblolly pine. 

Pacific Northwest 

Stand Management 

Cooperative 
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Figure 5.   Study site locations of the Stand Management Cooperative paired-tree fertilization 

trials distributed throughout the geographic range of coastal Douglas-fir in the United States.  

 

 

 
Figure 6.  Study site locations of the Forest Productivity Cooperative regional fertilization trials 

distributed throughout the geographic range of loblolly pine. 

Forest Productivity Cooperative 

• Incorporate foliar biochemical response and 

hyperspectral data to improve discrimination 

across species. 

• Derive and incorporate response metrics from 

Landsat time series at our measured sites 

 

Future Work 


